home *** CD-ROM | disk | FTP | other *** search
- window(-1,1,-2,-1.56125e-17);
- /*
- The Pythagoras.
-
-
- This construction can be used to proof the Pythagoras theorem.
- From the figure, we get by comparing the areas
-
- (a+b)^2=2ab+c^2,
-
- which transforms to
-
- a^2+b^2=c^2.
-
-
- Move X to see the correctness of this reasoning.
- */
- "Point_141"()=point(-0.509537,-0.356948);
- "Point_142"()=point(0.362398,-0.356948);
- "Segment_47"()=segment("Point_141","Point_142");
- "Point_143"(hidden),"Line_79"(hidden)=rectangular("Point_141","Segment_47");
- "Point_144"(hidden),"Line_80"(hidden)=rectangular("Point_142","Segment_47");
- "Circle_57"(hidden)=circle("Point_142","Point_141");
- "Cut_78"(hidden),"Cut_79"()=intersection("Line_80","Circle_57");
- "Point_147"(hidden),"Line_81"(hidden)=parallel("Cut_79","Segment_47");
- "Cut_80"()=intersection("Line_79","Line_81");
- "Segment_48"()=segment("Point_141","Cut_80");
- "Segment_49"()=segment("Cut_80","Cut_79");
- "Segment_50"()=segment("Cut_79","Point_142");
- "X"(showname)=pointon("Segment_47",0.0344828,-0.356948);
- "Point_150"(hidden),"Circle_58"(hidden)=circle3("Cut_79","Point_142","X");
- "Point_151"(hidden),"Circle_59"(hidden)=circle3("Cut_80","Point_142","X");
- "Cut_81"(),"Cut_82"(hidden)=intersection("Circle_59","Segment_49");
- "Cut_83"(),"Cut_84"(hidden)=intersection("Circle_58","Segment_50");
- "Segment_51"()=segment("X","Cut_83");
- "Segment_52"()=segment("Cut_83","Cut_81");
- "Point_156"(hidden),"Line_87"(hidden)=parallel("Cut_81","Segment_51");
- "Cut_85"()=intersection("Segment_48","Line_87");
- "Segment_53"()=segment("Cut_81","Cut_85");
- "Segment_54"()=segment("Cut_85","X");
- "a"(color:green,showname)=segment("Point_141","X");
- "b"(color:green,showname)=segment("Point_141","Cut_85");
- "c"(color:green,showname)=segment("Cut_85","X");
-